Jump to main content
Jump to site search

Issue 8, 2014
Previous Article Next Article

A hydrodynamically optimized nano-electrospray ionization source and vacuum interface

Author affiliations

Abstract

The coupling of atmospheric pressure ionization (API) sources like electrospray ionization (ESI) to vacuum based applications like mass spectrometry (MS) or ion beam deposition (IBD) is done by differential pumping, starting with a capillary or pinhole inlet. Because of its low ion transfer efficiency the inlet represents a major bottleneck for these applications. Here we present a nano-ESI vacuum interface optimized to exploit the hydrodynamic drag of the background gas for collimation and the reduction of space charge repulsion. Up to a space charge limit of 40 nA we observe 100% current transmission through a capillary with an inlet and show by MS and IBD experiments that the transmitted ion beams are well defined and free of additional contamination compared to a conventional interface. Based on computational fluid dynamics modelling and ion transport simulations, we show how the specific shape enhances the collimation of the ion cloud. Mass selected ion currents in the nanoampere range available further downstream in high vacuum open many perspectives for the efficient use of electrospray ion beam deposition (ES-IBD) as a surface coating method.

Graphical abstract: A hydrodynamically optimized nano-electrospray ionization source and vacuum interface

Back to tab navigation

Supplementary files

Publication details

The article was received on 26 Sep 2013, accepted on 11 Dec 2013 and first published on 30 Jan 2014


Article type: Paper
DOI: 10.1039/C3AN01836A
Citation: Analyst, 2014,139, 1856-1867
  • Open access: Creative Commons BY license
  •   Request permissions

    A hydrodynamically optimized nano-electrospray ionization source and vacuum interface

    M. Pauly, M. Sroka, J. Reiss, G. Rinke, A. Albarghash, R. Vogelgesang, H. Hahne, B. Kuster, J. Sesterhenn, K. Kern and S. Rauschenbach, Analyst, 2014, 139, 1856
    DOI: 10.1039/C3AN01836A

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements