Issue 4, 2014

Electrochemical analysis of the fibrillation of Parkinson's disease α-synuclein

Abstract

Amyloid formation of proteins and peptides is an important biomedical and biotechnological problem, intensively studied and yet not fully understood. In this context, the development of fast and reliable methods for real-time monitoring of protein misfolding is of particular importance for unambiguous establishment of disease-, drug- and environmentally induced mechanisms of protein aggregation. Here we show that the extent of aggregation of α-synuclein (αSN), involved in Parkinson's disease and other neurodegenerative disorders, can be electrochemically monitored by oxidizing tyrosine (Tyr) residues surface-exposed in monomeric αSN and buried in fibrillated αSN adsorbed onto graphite electrodes. Adsorption of αSN, analyzed through the Tyr electrochemistry, followed the Langmuir adsorption isotherm. The degree of electrooxidation of Tyr in αSN decreased upon protein fibrillation and correlated with the extent of αSN aggregation determined by the spectroscopic analysis of the fibrillation process. Minor changes in the adsorption state of αSN were followed through the shift of the Tyr oxidation potential, consistent with the compact and less-compact/unfolded conformation of αSN. Our results allow reliable electroanalysis of the extent of αSN fibrillation in vitro and offer an efficient tool for future in vivo monitoring of the protein conformational state.

Graphical abstract: Electrochemical analysis of the fibrillation of Parkinson's disease α-synuclein

Article information

Article type
Paper
Submitted
27 Aug 2013
Accepted
22 Nov 2013
First published
25 Nov 2013

Analyst, 2014,139, 749-756

Electrochemical analysis of the fibrillation of Parkinson's disease α-synuclein

P. Lopes, H. Dyrnesli, N. Lorenzen, D. Otzen and E. E. Ferapontova, Analyst, 2014, 139, 749 DOI: 10.1039/C3AN01616A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements