Issue 6, 2014

Chemically tunable cationic polymer-bonded magnetic nanoparticles for gene magnetofection

Abstract

This study evaluates the efficiency of novel non-viral vectors consisting of super paramagnetic iron oxide nanoparticles functionalized with the chemically tunable cationic polymer for in vitro gene magnetofection. The cationic polymer, poly(vinyl pyridinium alkyl halide), with a reactive alkoxysilyl group at one terminal of the polymer (VPCmn, m = length of the side chain and n = polymerization degree), was grafted onto the surface of iron oxide nanoparticles through a silane coupling reaction. The VPCmn grafted-magnetic nanoparticles (Mag-VPCmn) were quaternized with various alkyl halides such as methyl iodide (m = 1), ethyl bromide (m = 2), butyl bromide (m = 4), hexyl bromide (m = 6) and octyl bromide (m = 8). Mag-VPCmn quaternized with a shorter alkyl chain (m = 1, 2, 4 and 6) were water dispersible, but that quaternized with a longer alkyl chain (m = 8) was precipitated in water. The surface of water dispersible Mag-VPCmns was positively charged in pH ranging from 2 to 11, and is stable for more than one month in this pH range. The complexes of Mag-VPCmns and nucleoside molecules with various N/P ratios were evaluated using gel electrophoresis, surface charge (ζ-potential) measurement, and particle size measurement. In vitro transfection experiments were assayed in human embryonic kidney 293 cells (HEK293 cells) using pmaxGFP plasmid as a reporter gene. Gene expression was found to be strongly influenced by the length of the side alkyl chains. Higher transfection efficiencies were observed with longer alkyl chains (C6 > C4 > C2 ≥ C1), indicating that hydrophobic side chains were effective in increasing the transfection efficiency.

Graphical abstract: Chemically tunable cationic polymer-bonded magnetic nanoparticles for gene magnetofection

Supplementary files

Article information

Article type
Paper
Submitted
19 Sep 2013
Accepted
22 Nov 2013
First published
28 Nov 2013

J. Mater. Chem. B, 2014,2, 644-650

Author version available

Chemically tunable cationic polymer-bonded magnetic nanoparticles for gene magnetofection

M. Takafuji, K. Kitaura, T. Nishiyama, S. Govindarajan, V. Gopal, T. Imamura and H. Ihara, J. Mater. Chem. B, 2014, 2, 644 DOI: 10.1039/C3TB21290D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements