Issue 31, 2013

Towards flexible organic thin film transistors (OTFTs) for biosensing

Abstract

We have studied parylene-N and parylene-C for their use as substrates and gate dielectrics in OTFTs. Parylene-N films with a thickness of 300 nm show the required dielectric properties, as verified by breakthrough-voltage measurements. The surface roughness measured for 300 nm thick parylene-N films is 4–5 nm. However, initial growth of parylene depends on the subjacent surface. This results in different thicknesses on Au electrodes and substrate materials for thin films. Capping of micro-patterned Au-electrodes with a thin Al layer via lift-off results in homogenous parylene film thickness on the whole sample surface. OTFTs are fabricated on glass with parylene-N as a gate dielectric and pentacene as a semiconductor. The electrodes are patterned by photolithography enabling micrometer sized features. The contact resistance is extracted by variation of the channel length. Modification of the parylene dielectric layer surface by plasma treatment with oxygen after deposition allows shifting of the threshold voltage to more positive values, however at the cost of increasing hysteresis. OTFTs fabricated on thin parylene-C films can be peeled off and could result in flexible devices employing parylene-C foil as a substrate. For a foil thickness of 3–4 μm, operational devices can be bent down to radii less than 1 mm, e.g. in the range of cannulas. Operation of such OTFTs with parylene-C as a gate dielectric in liquids is demonstrated. The OTFT current can be modulated by the potential in the electrolyte as well as by the bottom gate potential. This allows for application of such OTFTs as sensors in medical devices.

Graphical abstract: Towards flexible organic thin film transistors (OTFTs) for biosensing

Article information

Article type
Paper
Submitted
24 Apr 2013
Accepted
17 May 2013
First published
20 May 2013

J. Mater. Chem. B, 2013,1, 3830-3835

Towards flexible organic thin film transistors (OTFTs) for biosensing

F. Werkmeister and B. Nickel, J. Mater. Chem. B, 2013, 1, 3830 DOI: 10.1039/C3TB20590H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements