Issue 41, 2013

The synthesis of shape-controlled MnO2/graphene composites via a facile one-step hydrothermal method and their application in supercapacitors

Abstract

Novel MnO2 petal nanosheet and nanorod/graphene composites are successfully fabricated by a facile one-step hydrothermal method through changing the content of the Mn source. The formation mechanism of different morphologies of MnO2/graphene composites have been studied. The structure of the MnO2/graphene is “sandwich”-like, with MnO2 petal nanosheets and nanorods homogeneously anchored on each side of the graphene. Furthermore, the MnO2/graphene composites with different shapes can be used for supercapacitor electrode materials. The experimental results show that the MnO2 petal nanosheet/graphene composite has better capacitance performance than that of the MnO2 nanorod/graphene composite. The MnO2 petal nanosheet/graphene composite shows excellent specific capacitance as high as 516.8 F g−1 at a scan rate of 1 mV s−1 in 1 M Na2SO4 electrolyte and good long-term cycle stability, indicating its potential application to act as a promising electrode material for high-performance supercapacitors. This study provides a facile and in situ method to prepare metal oxide/graphene composite materials and a novel scaffold to construct other metal oxides with graphene for energy storage.

Graphical abstract: The synthesis of shape-controlled MnO2/graphene composites via a facile one-step hydrothermal method and their application in supercapacitors

Article information

Article type
Paper
Submitted
17 Jul 2013
Accepted
24 Aug 2013
First published
29 Aug 2013

J. Mater. Chem. A, 2013,1, 12818-12825

The synthesis of shape-controlled MnO2/graphene composites via a facile one-step hydrothermal method and their application in supercapacitors

X. Feng, Z. Yan, N. Chen, Y. Zhang, Y. Ma, X. Liu, Q. Fan, L. Wang and W. Huang, J. Mater. Chem. A, 2013, 1, 12818 DOI: 10.1039/C3TA12780J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements