Issue 37, 2013

Reversible hydrogen storage in Mg(BH4)2/carbon nanocomposites

Abstract

Mg(BH4)2 exhibits a high hydrogen content of 14.9 wt% and thermodynamic stability in the overall decomposition reaction that corresponds to hydrogen desorption at around room temperature. However, the potential applications in hydrogen storage are restricted by high kinetic barriers. In this study, we show the synthesis of Mg(BH4)2/carbon nanocomposites by ball milling of MgH2 nanoparticles supported on carbon aerogel in a B2H6/H2 atmosphere. The nanocomposite exhibits a lower kinetic barrier as compared to bulk Mg(BH4)2. The temperature for major hydrogen desorption is decreased to 160 °C. Furthermore, re-formation of Mg(BH4)2 after full dehydrogenation is achieved under mild conditions (200 °C and 80 to 150 bar H2) in the nanocomposite. This work demonstrates nanoengineering as an effective approach to realize the reversible hydrogen storage of Mg(BH4)2 under mild conditions.

Graphical abstract: Reversible hydrogen storage in Mg(BH4)2/carbon nanocomposites

Supplementary files

Article information

Article type
Paper
Submitted
07 Jun 2013
Accepted
18 Jul 2013
First published
19 Jul 2013
This article is Open Access
Creative Commons BY-NC license

J. Mater. Chem. A, 2013,1, 11177-11183

Reversible hydrogen storage in Mg(BH4)2/carbon nanocomposites

Y. Yan, Y. S. Au, D. Rentsch, A. Remhof, P. E. de Jongh and A. Züttel, J. Mater. Chem. A, 2013, 1, 11177 DOI: 10.1039/C3TA12222K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements