Issue 22, 2013

Anisotropic ionic conductivity in fluorinated ionic liquid crystals suitable for optoelectronic applications

Abstract

In this work, we report a library of thirteen fluorinated ionic liquids consisting of iodide salts of 1-alkyl-3-polyfluoroalkyl-imidazolium cations. By changing the length of the alkyl and polyfluoroalkyl pendants, we discovered that particular combinations of these result in compounds showing a mesophase. The nature and the molecular arrangement of the mesophase are characterised by polarised optical microscopy and powder X-ray diffraction analysis, among others. We demonstrate that, after the addition of I2 to generate the I/I3 redox couple, anisotropic ionic conductivity takes place along preferential pathways in the lamellar structure of the mesophase. Notably, the addition of I2 does not suppress the mesophase temperature range, contrary to previously reported systems. Furthermore, the tendency of these materials to supercool allows the molecular arrangement in the mesophase to be retained in a solid film at ambient temperatures. Finally, we demonstrate their applicability as a quasi-solid electrolyte by preparing dye-sensitised solar cells with power conversion efficiencies comparable to the previous reports.

Graphical abstract: Anisotropic ionic conductivity in fluorinated ionic liquid crystals suitable for optoelectronic applications

Supplementary files

Article information

Article type
Paper
Submitted
08 Mar 2013
Accepted
05 Apr 2013
First published
05 Apr 2013

J. Mater. Chem. A, 2013,1, 6572-6578

Anisotropic ionic conductivity in fluorinated ionic liquid crystals suitable for optoelectronic applications

A. Abate, A. Petrozza, G. Cavallo, G. Lanzani, F. Matteucci, D. W. Bruce, N. Houbenov, P. Metrangolo and G. Resnati, J. Mater. Chem. A, 2013, 1, 6572 DOI: 10.1039/C3TA10990A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements