Issue 36, 2013

Translational and rotational dynamics in suspensions of magnetic nanorods

Abstract

Using computer simulations we investigate the translational and rotational diffusion of dilute suspensions of magnetic nanorods with and without a (homogeneous) external magnetic field. The magnetic rods are represented as spherocylinders with a longitudinal point dipole at their center and length-to-breadth ratios L/D = 3 or L/D = 9. In the absence of a field, the rods tend to form compact clusters with antiparallel ordering and thus behave very differently to dipolar spheres (L/D = 0), which tend to form head-to-tail chains. Furthermore, for rod-like particles the external field tends to destabilize rather than to support cluster formation. We show that these differences in the aggregation behavior have profound consequences not only in static material properties such as the field-induced magnetization and the zero-frequency susceptibility, but also in the dynamics. In particular, for magnetic rods the translational diffusion constant parallel to the field is larger than the perpendicular one, in contrast to the behavior observed for magnetic spheres. Moreover, the rod-like character greatly affects the shape and the density dependence of the single-particle and collective dipole–dipole time correlation functions and their counterparts in the frequency domain.

Graphical abstract: Translational and rotational dynamics in suspensions of magnetic nanorods

Article information

Article type
Paper
Submitted
03 Jun 2013
Accepted
22 Jul 2013
First published
25 Jul 2013

Soft Matter, 2013,9, 8761-8770

Translational and rotational dynamics in suspensions of magnetic nanorods

C. E. Alvarez and S. H. L. Klapp, Soft Matter, 2013, 9, 8761 DOI: 10.1039/C3SM51549D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements