Issue 8, 2013

Single-cell resolution diagnosis of cancer cells by carbon nanotube electrical spectroscopy

Abstract

We report the use of vertically aligned carbon nanotubes (VACNTs) as electrical endoscopes (biosensors) for cancer metastatic diagnosis at single-cell resolution. The device is based on direct signal extraction by means of vertically aligned conductive carbon nanotubes from a live cell membrane, which has been disrupted during carcinogenesis at its primary and progressive stages. The value of this electrical disruption depends on the cancer metastatic grade. In addition, the electrical resonance behavior of the cell, halted during cancer progression, could be monitored as a new cancer diagnostic profile. By taking a second derivative of the cell impedance with respect to applied frequency, we have arrived at a new spectroscopy tool for distinguishing cancerous stages of colon and breast carcinoma cells.

Graphical abstract: Single-cell resolution diagnosis of cancer cells by carbon nanotube electrical spectroscopy

Supplementary files

Article information

Article type
Paper
Submitted
01 Nov 2012
Accepted
06 Feb 2013
First published
08 Feb 2013

Nanoscale, 2013,5, 3421-3427

Single-cell resolution diagnosis of cancer cells by carbon nanotube electrical spectroscopy

M. Abdolahad, M. Janmaleki, M. Taghinejad, H. Taghnejad, F. Salehi and S. Mohajerzadeh, Nanoscale, 2013, 5, 3421 DOI: 10.1039/C3NR33430A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements