Volume 163, 2013

A new approach toward transition state spectroscopy

Abstract

Chirped-Pulse millimetre-Wave (CPmmW) rotational spectroscopy provides a new class of information about photolysis transition state(s). Measured intensities in rotational spectra determine species-isomer-vibrational populations, provided that the rotational populations can be thermalized. The formation and detection of S0 vinylidene is discussed in the limits of low and high initial rotational excitation. CPmmW spectra of 193 nm photolysis of vinyl cyanide (acrylonitrile) contain J = 0–1 transitions in more than 20 vibrational levels of HCN and HNC, but no transitions in vinylidene or highly excited local-bender vibrational levels of acetylene. Reasons for the non-observation of the vinylidene co-product of HCN are discussed.

Article information

Article type
Paper
Submitted
29 Dec 2012
Accepted
01 Feb 2013
First published
01 Feb 2013

Faraday Discuss., 2013,163, 33-57

A new approach toward transition state spectroscopy

K. Prozument, R. G. Shaver, M. A. Ciuba, J. S. Muenter, G. B. Park, J. F. Stanton, H. Guo, B. M. Wong, D. S. Perry and R. W. Field, Faraday Discuss., 2013, 163, 33 DOI: 10.1039/C3FD20160K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements