Issue 1, 2013

Nitrogen removal with energy recovery through N2O decomposition

Abstract

A new process for the removal of nitrogen from wastewater is introduced. The process involves three steps: (1) partial nitrification of NH4+ to NO2; (2) partial anoxic reduction of NO2 to N2O; and (3) N2O conversion to N2 with energy recovery by either catalytic decomposition to N2 and O2 or use of N2O to oxidize biogas CH4. Steps 1 and 3 have been previously established at full-scale. Accordingly, bench-scale experiments focused on step 2. Two strategies were evaluated and found to be effective: in the first, Fe(II) was used to abiotically reduce NO2 to N2O; in the second, COD stored as polyhydroxybutyrate (PHB) was used as the electron donor for partial heterotrophic reduction of NO2 to N2O. For abiotic reduction with Fe(II), the efficiency of conversion of NO2 to N2O was over 90% with 98% nitrogen removal from water. For partial heterotrophic denitrification, different selection conditions were imposed on acetate- and nitrite-fed communities initially derived from waste activated sludge. No N2O was detected when acetate and nitrite were supplied continuously, but N2O was produced when acetate and nitrite were added as pulses. N2O conversion efficiency was dependent upon the method of addition of acetate and nitrite. When acetate and nitrite were added together (coupled feeding), the N2O conversion efficiency was 9–12%, but when acetate and nitrite additions were decoupled, the N2O conversion efficiency was 60–65%. Decoupled substrate addition selected for a microbial community that accumulated polyhydroxybutyrate (PHB) during an anaerobic period after acetate addition then consumed PHB and reduced NO2 during the subsequent anoxic period. The biological N removal efficiency from the water was 98% over more than 200 cycles. This indicates that decoupled operation can sustain significant long-term N2O production. Compared to conventional nitrogen removal, the three-step process, referred to here as Coupled Aerobic–anoxic Nitrous Decomposition Operation (CANDO), is expected to decrease oxygen requirements, decrease biomass production, increase organic matter available for recovery as biogas methane, and enable energy recovery from nitrogen, but pilot-scale studies are needed.

Graphical abstract: Nitrogen removal with energy recovery through N2O decomposition

Supplementary files

Article information

Article type
Paper
Submitted
08 Jun 2012
Accepted
06 Nov 2012
First published
06 Nov 2012

Energy Environ. Sci., 2013,6, 241-248

Nitrogen removal with energy recovery through N2O decomposition

Y. D. Scherson, G. F. Wells, S. Woo, J. Lee, J. Park, B. J. Cantwell and C. S. Criddle, Energy Environ. Sci., 2013, 6, 241 DOI: 10.1039/C2EE22487A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements