Issue 5, 2013

Effect of graphitic carbon nitride microstructures on the activity and selectivity of photocatalytic CO2 reduction under visible light

Abstract

Two kinds of graphitic carbon nitride (g-C3N4) were synthesized through a pyrolysis process of urea or melamine. It is found that the obtained g-C3N4, as photocatalysts, can reduce CO2 to organic fuels under visible light, and exhibit different photoactivity and selectivity on the formation of CH3OH and C2H5OH. The product derived from the urea (denoted as u-g-C3N4) shows a mesoporous flake-like structure with a larger surface area and higher photoactivity for the CO2 reduction than the non-porous flaky product obtained from melamine (denoted as m-g-C3N4). Moreover, using u-g-C3N4 as a photocatalyst can result in the formation of a mixture containing CH3OH and C2H5OH, while m-g-C3N4 only leads to the selective formation of C2H5OH. The present interesting findings could shed light on the design of efficient, eco-friendly and convenient photocatalysts and the tuning of their photoreactivity in the field of sustainable light-to-energy conversion.

Graphical abstract: Effect of graphitic carbon nitride microstructures on the activity and selectivity of photocatalytic CO2 reduction under visible light

Supplementary files

Article information

Article type
Paper
Submitted
28 Nov 2012
Accepted
07 Jan 2013
First published
09 Jan 2013

Catal. Sci. Technol., 2013,3, 1253-1260

Effect of graphitic carbon nitride microstructures on the activity and selectivity of photocatalytic CO2 reduction under visible light

J. Mao, T. Peng, X. Zhang, K. Li, L. Ye and L. Zan, Catal. Sci. Technol., 2013, 3, 1253 DOI: 10.1039/C3CY20822B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements