Issue 6, 2014

CO2 photoreduction with H2O vapor by porous MgO–TiO2 microspheres: effects of surface MgO dispersion and CO2 adsorption–desorption dynamics

Abstract

Photocatalytic reduction of CO2 with H2O vapor for CO production at a temperature of 150 °C was studied using porous MgO–TiO2 microspheres as the photocatalysts with the benefits of improved CO2 adsorption by incorporating MgO and enhanced products/intermediates desorption at a higher temperature. The MgO–TiO2 microspheres were fabricated by two methods: (1) a one-step spray pyrolysis method using TiO2 (P25) nanoparticles dispersed in Mg(NO3)2 solution as the precursors (Mg/Ti-SP), and (2) spray pyrolysis synthesis of pure TiO2 (P25) microspheres first and then wet-impregnation with MgO (Mg/Ti-WI). The two material synthesis methods led to different MgO dispersion on the TiO2 surface. For Mg/Ti-SP, the strong aggregation of MgO nanoparticles caused a rough surface of the MgO–TiO2 microsphere; while for Mg/Ti-WI, MgO was more uniformly deposited leading to a much smoother surface of the microsphere. The surface dispersion of MgO was found to significantly affect the performance of MgO–TiO2 in CO2 photoreduction. At the same MgO concentration, Mg/Ti-SP had more than two times higher activity than Mg/Ti-WI, and most importantly, little deactivation of the catalyst was observed on Mg/Ti-SP while Mg/Ti-WI started to deactivate after 1 to 2 h when the reactor was operating in a continuous flow mode. The ease of photo-induced electron transfer to the catalyst surface may have contributed to the superb activity of Mg/Ti-SP samples. The optimum MgO concentration was found to be 5% for both types of materials. Besides the dispersion of MgO, we also found that the CO2 adsorption–desorption dynamics strongly influenced the CO2 photoreduction. The results from in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) revealed two advantages of Mg/Ti-SP over Mg/Ti-WI: (1) more abundant bicarbonates (important intermediates for CO production) on the surface and (2) easier desorption/transformation of intermediates.

Graphical abstract: CO2 photoreduction with H2O vapor by porous MgO–TiO2 microspheres: effects of surface MgO dispersion and CO2 adsorption–desorption dynamics

Supplementary files

Article information

Article type
Paper
Submitted
14 Oct 2013
Accepted
10 Dec 2013
First published
11 Dec 2013

Catal. Sci. Technol., 2014,4, 1539-1546

CO2 photoreduction with H2O vapor by porous MgO–TiO2 microspheres: effects of surface MgO dispersion and CO2 adsorption–desorption dynamics

L. Liu, C. Zhao, D. Pitts, H. Zhao and Y. Li, Catal. Sci. Technol., 2014, 4, 1539 DOI: 10.1039/C3CY00807J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements