The sustainable development of carbon recycling has attracted considerable attention from the viewpoint of the environment and resources. Herein, Ni nanoparticles (NPs) immobilized on a TiO2 support were synthesized via a deposition–precipitation method followed by a calcination–reduction process (denoted as Ni/TiO2-DP), which can be used as a promising heterogeneous catalyst towards CO2 methanation. Transmission electron microscope (TEM) images show that Ni NPs are highly dispersed on the TiO2 surface (particle size: 2.2 nm), with a low Ni–Ni coordination number revealed by the hydrogen temperature programmed desorption (H2-TPD) and extended X-ray absorption fine structure (EXAFS) techniques. Moreover, the catalyst with a Ni loading of 15 wt% exhibits excellent catalytic behavior towards CO2 methanation (conversion: 96%; selectivity: 99%) at a reaction temperature as low as 260 °C. The good dispersion of Ni NPs with large unsaturation facilitates a high exposure of active sites, which accelerates the formation of surface-dissociated hydrogen and the subsequent hydrogenation removal of surface nickel carbonyl species, accounting for the resulting enhanced low-temperature catalytic performance.
You have access to this article
Please wait while we load your content...
Something went wrong. Try again?