Issue 40, 2013

Cost-effective CO2 capture based on in silico screening of zeolites and process optimization

Abstract

A hierarchical computational approach is introduced that combines materials screening with process optimization. This approach leads to novel materials for cost-effective CO2 capture. Zeolites are screened using shape, size, and adsorption selectivities. Next, process optimization is introduced to generate a rank-ordered list based on total cost of capture and compression. We not only select the most cost-effective materials, but we also attain the optimal process conditions while satisfying purity, recovery, and other process constraints. The top ten zeolites (AHT, NAB, MVY, ABW, AWO, WEI, VNI, TON, OFF and ITW) can capture and compress CO2 to 150 bar from a mixture of 14% CO2 and 86% N2 at less than $30 per ton of CO2 captured. Several zeolites have moderate selectivities, yet they cost-effectively capture CO2 with 90% purity and 90% recovery using a 4-step adsorption process. Such nonintuitive selection demonstrates the necessity of combining materials-centric and process-centric viewpoints.

Graphical abstract: Cost-effective CO2 capture based on in silico screening of zeolites and process optimization

Supplementary files

Article information

Article type
Paper
Submitted
27 Aug 2013
Accepted
27 Aug 2013
First published
28 Aug 2013

Phys. Chem. Chem. Phys., 2013,15, 17601-17618

Cost-effective CO2 capture based on in silico screening of zeolites and process optimization

M. M. F. Hasan, E. L. First and C. A. Floudas, Phys. Chem. Chem. Phys., 2013, 15, 17601 DOI: 10.1039/C3CP53627K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements