Issue 46, 2013

Electronic structure, adsorption geometry, and photoswitchability of azobenzene layers adsorbed on layered crystals

Abstract

Mono- and multilayers of the molecular photoswitch azobenzene were adsorbed on two layered transition-metal dichalcogenides, semiconducting HfS2 and metallic TiTe2, at temperatures of 80–120 K and investigated in situ using valence-band and core-level photoelectron spectroscopy as well as near-edge X-ray absorption fine structure spectroscopy. The spectroscopic results indicate similar growth modes on the two substrates. In the monolayer systems, the azobenzene molecules tend to lie flat on the surface with average tilt angles of <15°, whereas the multilayer systems show a larger average tilt angle of 35–45°, depending on substrate surface conditions. The chemical environment of azobenzene, as investigated by XPS, does not change significantly from mono- to multilayers suggesting weak adsorbate–substrate coupling for the molecular layer that forms the interface with the substrate. Irradiation with ultraviolet light with a wavelength of 365 nm leads to a partial rearrangement of the adsorbed azobenzene molecules with a trans-to-cis conversion of up to 35%.

Graphical abstract: Electronic structure, adsorption geometry, and photoswitchability of azobenzene layers adsorbed on layered crystals

Article information

Article type
Paper
Submitted
17 Jul 2013
Accepted
14 Oct 2013
First published
14 Oct 2013

Phys. Chem. Chem. Phys., 2013,15, 20272-20280

Electronic structure, adsorption geometry, and photoswitchability of azobenzene layers adsorbed on layered crystals

E. Ludwig, T. Strunskus, S. Hellmann, A. Nefedov, C. Wöll, L. Kipp and K. Rossnagel, Phys. Chem. Chem. Phys., 2013, 15, 20272 DOI: 10.1039/C3CP53003E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements