Issue 31, 2013

Electronic properties of CuPc and H2Pc: an experimental and theoretical study

Abstract

Phthalocyanine (H2Pc) and its open-shell copper complex (CuPc) deposited on amorphous gold films have been studied by combining the outcomes of several synchrotron based spectroscopic tools (X-ray photoelectron spectroscopy, UV photoelectron spectroscopy and near-edge X-ray absorption fine structure, NEXAFS, spectroscopy) with those of density functional theory (DFT) calculations. The assignment of experimental evidence has been guided by the results of DFT numerical experiments carried out on isolated molecules. With specific reference to CuPc NEXAFS data collected at the N K-edge, they have been assigned by using the open-shell time-dependent DFT (TDDFT) in the framework of the zeroth order regular approximation (ZORA) scalar relativistic approach. The agreement between theory and experiment has been found to be satisfactory, thus indicating that the open-shell TDDFT (F. Wang and T. Ziegler, Mol. Phys., 2004, 102, 2585) may be used with some confidence to look into the X-ray absorption spectroscopy results pertinent to transition metal complexes. As far as the metal–ligand interaction is concerned, the combined use of NEXAFS spectroscopy and DFT outcomes ultimately testified the significant ionic contribution characterizing the bonding between the metal centre and the nitrogen atoms of the phthalocyanine coordinative pocket.

Graphical abstract: Electronic properties of CuPc and H2Pc: an experimental and theoretical study

Article information

Article type
Paper
Submitted
21 Mar 2013
Accepted
29 May 2013
First published
29 May 2013

Phys. Chem. Chem. Phys., 2013,15, 12864-12881

Electronic properties of CuPc and H2Pc: an experimental and theoretical study

M. V. Nardi, F. Detto, L. Aversa, R. Verucchi, G. Salviati, S. Iannotta and M. Casarin, Phys. Chem. Chem. Phys., 2013, 15, 12864 DOI: 10.1039/C3CP51224J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements