Issue 20, 2013

Two-photonabsorption spectra of a near-infrared 2-azaazulene polymethine dye: solvation and ground-state symmetry breaking

Abstract

Polymethine dyes (PDs) with absorption bands in the near-infrared region undergo symmetry breaking in polar solvents. To investigate how symmetry breaking affects nonlinear optical responses of PDs, an extensive and challenging experimental characterization of a cationic 2-azaazulene polymethine dye, including linear absorption, fluorescence, two-photon absorption and excited-state absorption, has been performed in two solvents with different polarity. Based on this extensive set of experimental data, a three-electronic-state model, accounting for the coupling of electronic degrees of freedom to molecular vibrations and polar solvation, has been reliably parameterized and validated for this dye, fully rationalizing optical spectra in terms of spectral position, intensities and bandshapes. In low-polarity solvents where the dye is mainly in its symmetric form, a nominally forbidden two-photon absorption band is observed, due to a vibronic activation mechanism. Inhomogeneous broadening plays a major role in polar solvents: absorption spectra represent the weighted sum of contributions from states with a variable amount of symmetry breaking, leading to a complex evolution of linear and nonlinear optical spectra with solvent polarity. In more polar solvents, the dominant role of the asymmetric form leads to the activation of two-photon absorption as a result of the symmetry lowering. The subtle interplay between the two mechanisms for two-photon absorption activation, vibronic coupling and polar solvation, can be fully accounted for within the proposed microscopic model allowing a detailed interpretation of the optical spectra of PDs.

Graphical abstract: Two-photon absorption spectra of a near-infrared 2-azaazulene polymethine dye: solvation and ground-state symmetry breaking

Supplementary files

Article information

Article type
Paper
Submitted
22 Feb 2013
Accepted
19 Mar 2013
First published
05 Apr 2013

Phys. Chem. Chem. Phys., 2013,15, 7666-7678

Two-photon absorption spectra of a near-infrared 2-azaazulene polymethine dye: solvation and ground-state symmetry breaking

H. Hu, O. V. Przhonska, F. Terenziani, A. Painelli, D. Fishman, T. R. Ensley, M. Reichert, S. Webster, J. L. Bricks, A. D. Kachkovski, D. J. Hagan and E. W. Van Stryland, Phys. Chem. Chem. Phys., 2013, 15, 7666 DOI: 10.1039/C3CP50811K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements