Issue 19, 2013

Tunable electronic and dielectric behavior of GaS and GaSe monolayers

Abstract

Here we present first-principles calculations to investigate systematically the electronic behavior and the electron energy low-loss spectra (EELS) of monolayer, bilayer, four-layer, and bulk configurations of periodic GaX (X = S, Se), as well as the effect of mechanical strain on the electronic properties of the GaX monolayer. We predicate that the GaX monolayer is a semiconductor with an indirect band gap, however, the difference between the direct and indirect gaps is so small that electrons can transfer easily between this minimum with a small amount of thermal energy. Owning to strong surface effects, the electronic and dielectric properties of GaX vary drastically with number of layers in a sheet. In detail, the band gap increases from multilayer-to-single layer and EELS shifts towards larger wavelengths with a decrease in the layer thickness. Moreover, we demonstrate that the band gaps of GaX monolayers can be widely tuned by mechanical deformation, making them potential candidates for tunable nanodevices. The present study provides theoretical insight leading to a better understanding of these novel 2D structures.

Graphical abstract: Tunable electronic and dielectric behavior of GaS and GaSe monolayers

Article information

Article type
Paper
Submitted
18 Jan 2013
Accepted
13 Mar 2013
First published
14 Mar 2013

Phys. Chem. Chem. Phys., 2013,15, 7098-7105

Tunable electronic and dielectric behavior of GaS and GaSe monolayers

Y. Ma, Y. Dai, M. Guo, L. Yu and B. Huang, Phys. Chem. Chem. Phys., 2013, 15, 7098 DOI: 10.1039/C3CP50233C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements