Issue 20, 2013

pH sensitive tubules of a bile acid derivative: a tubule opening by release of wall leaves

Abstract

Tubules formed by self-assembly of organic molecules have vast potential for nanotechnology applications, and the introduction of sensitivity to stimuli into self-assembly tubules represents a particularly attractive feature. Here we report the preparation and characterization of a molecule obtained by chemical modification of a natural bile acid, a biological surfactant, that self-assembles in pH sensitive tubules in aqueous solutions. The tubules, which are rigid, single-walled and with a diameter of 60 nm, form at pH 8–9 and open up when the pH is increased. The transition is reversible, it occurs in the pH range of 9–10 with an opening mechanism that is remarkably different from those so far proposed in the literature. It involves a release of wall layers similar to leaves, and is determined by a drastic pH-triggered change in the molecular arrangement, which in turn induces a radical modification of the wall curvature. The description of the morphological transformation is provided by means of cryogenic transmission electron microscopy and represents, to our knowledge, the first detailed visualization of pH stimulated tubule opening. UV and circular dichroism spectroscopies are used to investigate the evolution at the molecular level.

Graphical abstract: pH sensitive tubules of a bile acid derivative: a tubule opening by release of wall leaves

Supplementary files

Article information

Article type
Paper
Submitted
10 Jan 2013
Accepted
26 Mar 2013
First published
27 Mar 2013

Phys. Chem. Chem. Phys., 2013,15, 7560-7566

pH sensitive tubules of a bile acid derivative: a tubule opening by release of wall leaves

M. C. di Gregorio, N. V. Pavel, A. Jover, F. Meijide, J. Vázquez Tato, V. H. Soto Tellini, A. Alfaro Vargas, O. Regev, Y. Kasavi, K. Schillén and L. Galantini, Phys. Chem. Chem. Phys., 2013, 15, 7560 DOI: 10.1039/C3CP00121K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements