Jump to main content
Jump to site search

Issue 30, 2013
Previous Article Next Article

Hierarchical nanostructure of WO3 nanorods on TiO2 nanofibers and the enhanced visible light photocatalytic activity for degradation of organic pollutants

Author affiliations

Abstract

A hierarchically nanostructured TiO2/WO3 photocatalyst was synthesized via the subsequent hydrothermal treatment of electrospun TiO2 nanofibers in the presence of tungstic acid. With a uniform WO3 seed layer providing growth sites, the nucleation on the nanofibers was uniform, thus uniform WO3 nanorods could be grown. The samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS), photoluminescence spectra (PL), and Brunauer–Emmett–Teller (BET) method. The results indicated that the WO3 nanorods with a diameter of about 40 nm and an average length of about 150 nm grew perpendicularly on the TiO2 nanofibers. The crystallite size and specific surface area of the bare TiO2 nanofibers were about 30 nm and 46.5 m2 g−1. The bare nanofibers are anatase phase with the average diameter of about 350 nm. The TiO2/WO3 heterostructures provide more accessible sites for both catalysis and adsorption, and the WO3 nanorods possess a single crystal structure, which facilitates the migration of the photogenerated electrons. Photocatalytic tests show that the TiO2/WO3 heterostructures exhibit a remarkably higher degradation rate of organic pollutants than that of the bare TiO2 nanofibers under visible light irradiation. The enhanced photocatalytic activity is attributed to the extended absorption in the visible light region and the effective charge separation derived from the coupling effect of TiO2 and WO3 nanocomposites.

Graphical abstract: Hierarchical nanostructure of WO3 nanorods on TiO2 nanofibers and the enhanced visible light photocatalytic activity for degradation of organic pollutants

Back to tab navigation

Supplementary files

Publication details

The article was received on 11 Apr 2013, accepted on 15 May 2013 and first published on 17 May 2013


Article type: Paper
DOI: 10.1039/C3CE40620B
Citation: CrystEngComm, 2013,15, 5986-5993
  •   Request permissions

    Hierarchical nanostructure of WO3 nanorods on TiO2 nanofibers and the enhanced visible light photocatalytic activity for degradation of organic pollutants

    L. Zhang, Y. Li, Q. Zhang and H. Wang, CrystEngComm, 2013, 15, 5986
    DOI: 10.1039/C3CE40620B

Search articles by author

Spotlight

Advertisements