Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance upgrade on Thursday 4th of May 2017 from 8.00am to 9.00am (BST).

During this time our websites will be offline temporarily. If you have any questions please use the feedback button on this page. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 13, 2013
Previous Article Next Article

Theoretical design of highly active SrTiO3-based photocatalysts by a codoping scheme towards solar energy utilization for hydrogen production

Author affiliations

Abstract

SrTiO3 is a promising photocatalyst for the production of hydrogen from water splitting under solar light. Cr doping is an effective treatment for adjusting its absorption edge to the visible-light range, although the performance of Cr-doped SrTiO3 is strongly affected by the oxidation number of the Cr ions. In this study, we theoretically predict that elevating the Fermi level, i.e., n-type carrier doping in SrTiO3, can stabilize the desirable oxidation number of chromium (Cr3+), contributing to a higher activity for H2 evolution. Our computational results, based on hybrid density-functional calculations, reveal that such an n-type condition is realized by substituting group-V metals (Ta, Sb, and Nb), group-III metals (La and Y), and fluorine atoms for the Ti, Sr, and O sites in SrTiO3, respectively. From our systematic study of the capability of each dopant, we conclude that La is the most effective donor for stabilizing Cr3+. This prediction is successfully evidenced by experiments showing that the La and Cr codoped SrTiO3 dramatically increases the amount of H2 gas evolved from water under visible-light irradiation, which demonstrates that our guiding principle based on Fermi level tuning by the codoping scheme is valid for the design of advanced photocatalysts.

Graphical abstract: Theoretical design of highly active SrTiO3-based photocatalysts by a codoping scheme towards solar energy utilization for hydrogen production

Back to tab navigation
Please wait while Download options loads

Supplementary files

Publication details

The article was received on 26 Sep 2012, accepted on 21 Dec 2012 and first published on 21 Dec 2012


Article type: Paper
DOI: 10.1039/C2TA00450J
Citation: J. Mater. Chem. A, 2013,1, 4221-4227
  • Open access:
  •   Request permissions

    Theoretical design of highly active SrTiO3-based photocatalysts by a codoping scheme towards solar energy utilization for hydrogen production

    P. Reunchan, S. Ouyang, N. Umezawa, H. Xu, Y. Zhang and J. Ye, J. Mater. Chem. A, 2013, 1, 4221
    DOI: 10.1039/C2TA00450J

Search articles by author