Issue 1, 2013

Graphene oxide as a promising photocatalyst for CO2 to methanol conversion

Abstract

Photocatalytic conversion of carbon dioxide (CO2) to hydrocarbons such as methanol makes possible simultaneous solar energy harvesting and CO2 reduction, two birds with one stone for the energy and environmental issues. This work describes a high photocatalytic conversion of CO2 to methanol using graphene oxides (GOs) as a promising photocatalyst. The modified Hummer's method has been applied to synthesize the GO based photocatalyst for the enhanced catalytic activity. The photocatalytic CO2 to methanol conversion rate on modified graphene oxide (GO-3) is 0.172 μmol g cat−1 h−1 under visible light, which is six-fold higher than the pure TiO2.

Graphical abstract: Graphene oxide as a promising photocatalyst for CO2 to methanol conversion

Supplementary files

Article information

Article type
Paper
Submitted
04 Jul 2012
Accepted
24 Oct 2012
First published
26 Oct 2012

Nanoscale, 2013,5, 262-268

Graphene oxide as a promising photocatalyst for CO2 to methanol conversion

H. Hsu, I. Shown, H. Wei, Y. Chang, H. Du, Y. Lin, C. Tseng, C. Wang, L. Chen, Y. Lin and K. Chen, Nanoscale, 2013, 5, 262 DOI: 10.1039/C2NR31718D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements