Jump to main content
Jump to site search

Issue 3, 2013
Previous Article Next Article

Lithium–oxygen batteries: bridging mechanistic understanding and battery performance

Author affiliations

Abstract

Rechargeable energy storage systems with high energy density and round-trip efficiency are urgently needed to capture and deliver renewable energy for applications such as electric transportation. Lithium–air/lithium–oxygen (Li–O2) batteries have received extraordinary research attention recently owing to their potential to provide positive electrode gravimetric energies considerably higher (∼3 to 5×) than Li-ion positive electrodes, although the packaged device energy density advantage will be lower (∼2×). In light of the major technological challenges of Li–O2 batteries, we discuss current understanding developed in non-carbonate electrolytes of Li–O2 redox chemistry upon discharge and charge, oxygen reduction reaction product characteristics upon discharge, and the chemical instability of electrolytes and carbon commonly used in the oxygen electrode. We show that the kinetics of oxygen reduction reaction are influenced by catalysts at small discharge capacities (Li2O2 thickness less than ∼1 nm), but not at large Li2O2 thicknesses, yielding insights into the governing processes during discharge. In addition, we discuss the characteristics of discharge products (mainly Li2O2) including morphological, electronic and surface features and parasitic reactivity with carbon. On charge, we examine the reaction mechanism of the oxygen evolution reaction from Li2O2 and the influence of catalysts on bulk Li2O2 decomposition. These analyses provide insights into major discrepancies regarding Li–O2 charge kinetics and the role of catalyst. In light of these findings, we highlight open questions and challenges in the Li–O2 field relevant to developing practical, reversible batteries that achieve the anticipated energy density advantage with a long cycle life.

Graphical abstract: Lithium–oxygen batteries: bridging mechanistic understanding and battery performance

Back to tab navigation
Please wait while Download options loads

Supplementary files

Publication details

The article was received on 02 Nov 2012, accepted on 21 Jan 2013 and first published on 21 Jan 2013


Article type: Review Article
DOI: 10.1039/C3EE23966G
Citation: Energy Environ. Sci., 2013,6, 750-768
  •   Request permissions

    Lithium–oxygen batteries: bridging mechanistic understanding and battery performance

    Y. Lu, B. M. Gallant, D. G. Kwabi, J. R. Harding, R. R. Mitchell, M. S. Whittingham and Y. Shao-Horn, Energy Environ. Sci., 2013, 6, 750
    DOI: 10.1039/C3EE23966G

Search articles by author