Issue 40, 2012

Shape memory polymer foams from emulsion templating

Abstract

Shape memory polymers (SMPs) change their shape under a stimulus (thermal, chemical, light) and return from an imposed temporary shape to their permanent, original shape. SMPs usually contain “permanent” domains that determine the permanent shape (chemical or physical crosslinks) and “reversible” domains that determine the temporary shape, usually by heating above a glass transition temperature or a melting point (Tm). Compared to fully dense SMPs, SMP foams can undergo higher temporary deformations and can exhibit higher deformations when they recover. In this paper, SMP foams based upon (meth)acrylates with crystallizable long side-chains were synthesized through emulsion-templating within nanoparticle-stabilized high internal phase Pickering emulsions where the nanoparticles also served as crosslinking centers. The nature of the polymer backbone affected the nature of the crystalline phase for identical side chains. The SMP foams at room temperature maintained the temporary shape (a strain of 0.7) imposed above the Tm and exhibited good recovery upon reheating for all four compression–recovery cycles. While the methacrylate-based SMP exhibited a single-stage recovery, the acrylate-based SMP, with identical side-chains, exhibited a two-stage recovery that can be associated with the existence of two crystalline phases. The recovery behavior was described using Kelvin–Voigt units in series with the dependence of viscosity on temperature described using a WLF-like relationship.

Graphical abstract: Shape memory polymer foams from emulsion templating

Supplementary files

Article information

Article type
Paper
Submitted
16 Jun 2012
Accepted
03 Aug 2012
First published
28 Aug 2012

Soft Matter, 2012,8, 10378-10387

Shape memory polymer foams from emulsion templating

I. Gurevitch and M. S. Silverstein, Soft Matter, 2012, 8, 10378 DOI: 10.1039/C2SM26404H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements