Creep and recovery behaviors of magnetorheological plastomer and its magnetic-dependent properties
Abstract
The creep and recovery behaviors of magnetorheological plastomer (MRP) were systematically investigated to further understand its deformation mechanism under constant stress. The experimental results suggested that the time-dependent mechanical properties of MRP were highly dependent on the magnetic field and the magnetic-controllable mechanism was discussed. The influences of iron particle distribution and temperature on the creep and recovery behaviors in the absence and presence of a magnetic field were investigated, respectively. A great discrepancy was presented in creep curves for the isotropic and anisotropic MRP under an external magnetic field, which must be induced by the different particle assemblies. In addition, the creep strain of MRP tended to decrease with increasing temperature under a 930 mT magnetic field and this phenomenon was opposite to the results obtained without a magnetic field. Finally, a hypothesis was proposed to explain the temperature effect on the creep behaviors of MRP.