Issue 32, 2012

Coadsorption-dependent orientation of fibronectin epitopes at hydrophilic gold surfaces

Abstract

The effect of coadsorption on the conformational arrangement of human plasma fibronectin (Fn) was studied for mixtures with human serum albumin (HSA) adsorbed onto mildly hydrophilic gold substrates. Quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM) were used to measure the mass uptake, thickness, viscoelastic behaviour, and morphology of the adsorbed protein adlayers. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was employed to determine the composition of binary protein adlayers, taking advantage of the principal component analysis (PCA) technique of ToF-SIMS data. Thus, the ToF-SIMS results provided the particular fragmentation patterns of the two proteins, showing that the resulting mixed protein layers were predominantly formed by Fn molecules, even for binary solutions with high molar fraction of HSA. The conformational arrangement of the Fn molecules was studied by combining ToF-SIMS and QCM-D techniques. ToF-SIMS data allowed the identification of Type I–Type III modules of Fn and showed that pure Fn layers predominantly expose Type III modules, while coadsorbed Fn/HSA layers predominantly expose Fn Type I epitopes. QCM-D was employed to measure the relative uptake of a polyclonal antibody (anti-Fn) to the 4F15F1 binding domain in the Fn Hep I fragment in Type I modules, showing that pure Fn adlayers have a reduced anti-Fn binding capacity, as expected for Type I modules buried within the adlayers, while coadsorbed Fn layers bind more efficiently the anti-Fn, as the concerned Type I module is predominantly exposed at the layer surface. The results overall demonstrated that coadsorption of Fn and HSA onto mildly hydrophilic gold substrates prompts Fn to undergo a closed-to-open conformational switch.

Graphical abstract: Coadsorption-dependent orientation of fibronectin epitopes at hydrophilic gold surfaces

Supplementary files

Article information

Article type
Paper
Submitted
01 Mar 2012
Accepted
24 May 2012
First published
03 Jul 2012

Soft Matter, 2012,8, 8370-8378

Coadsorption-dependent orientation of fibronectin epitopes at hydrophilic gold surfaces

N. Giamblanco, G. Zhavnerko, N. Tuccitto, A. Licciardello and G. Marletta, Soft Matter, 2012, 8, 8370 DOI: 10.1039/C2SM25490E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements