Issue 3, 2013

From metal–organic framework (MOF) to MOF–polymer composite membrane: enhancement of low-humidity proton conductivity

Abstract

A chiral two-dimensional MOF, {[Ca(D-Hpmpc)(H2O)2]·2HO0.5}n (1, D-H3pmpc = D-1-(phosphonomethyl) piperidine-3-carboxylic acid), with intrinsic proton conductivity has been synthesized and characterized. Structure analysis shows that compound 1 possesses protonated tertiary amines as proton carriers and hydrogen-bonding chains served as proton-conducting pathways. Further, MOF–polymer composite membranes have been fabricated via assembling polymer PVP with different contents of rod-like 1 submicrometer crystals. Interestingly, the proton conductivity of this composite membrane containing 50 wt% 1 is rapidly increased, compared with that of pure submicrometer crystals at 298 K and ∼53% RH. Therefore, it is feasible to introduce humidification of PVP into composite membranes to enhance low-humidity proton conductivity; and humidified PVP with adsorbed water molecules plays an important role in proton conduction indicated by the results of water physical sorption and TG/DTG analyses. This study may offer a facile strategy to prepare a variety of solid electrolyte materials with distinctive proton-conducting properties under a low humidity.

Graphical abstract: From metal–organic framework (MOF) to MOF–polymer composite membrane: enhancement of low-humidity proton conductivity

Supplementary files

Article information

Article type
Edge Article
Submitted
08 Sep 2012
Accepted
22 Nov 2012
First published
23 Nov 2012

Chem. Sci., 2013,4, 983-992

From metal–organic framework (MOF) to MOF–polymer composite membrane: enhancement of low-humidity proton conductivity

X. Liang, F. Zhang, W. Feng, X. Zou, C. Zhao, H. Na, C. Liu, F. Sun and G. Zhu, Chem. Sci., 2013, 4, 983 DOI: 10.1039/C2SC21927A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements