Issue 8, 2012

Inter- and intramolecular Mitsunobu reaction and metal complexation study: synthesis of S-amino acids derived chiral 1,2,3,4-tetrahydroquinoxaline, benzo-annulated [9]-N3 peraza, [12]-N4 peraza-macrocycles

Abstract

Substituted 1,2,3,4-tetrahydroquinoxaline, benzo-annulated unsymmetrical chiral [9]-N3 peraza, and [12]-N4 peraza-macrocycles have been synthesized employing an inter- and intramolecular Mitsunobu reaction from an amino acid derived common synthetic intermediate 3. The metal complexation study of these macrocycles has been investigated by UV-visible spectroscopic technique with binding constant (Kb) value 1.84 × 103 dm3 mol−1 using the Benesi–Hildebrand equation and a Gibbs free energy (ΔG) −19.4 kJ mol−1 at 35 °C for 14d with Co2+. The binding properties of the metal were dependent on the structure of polyaza-macrocycles that were confirmed by the DFT optimized structure of two macrocycles. A detailed investigaton of UV-visible spectra of macrocycles and their complete interpretation with the help of TD-DFT along with the frontier molecular orbital calculations are presented.

Graphical abstract: Inter- and intramolecular Mitsunobu reaction and metal complexation study: synthesis of S-amino acids derived chiral 1,2,3,4-tetrahydroquinoxaline, benzo-annulated [9]-N3 peraza, [12]-N4 peraza-macrocycles

Supplementary files

Article information

Article type
Paper
Submitted
01 Aug 2011
Accepted
27 Oct 2011
First published
17 Nov 2011

Org. Biomol. Chem., 2012,10, 1553-1564

Inter- and intramolecular Mitsunobu reaction and metal complexation study: synthesis of S-amino acids derived chiral 1,2,3,4-tetrahydroquinoxaline, benzo-annulated [9]-N3 peraza, [12]-N4 peraza-macrocycles

K. Samanta, N. Srivastava, S. Saha and G. Panda, Org. Biomol. Chem., 2012, 10, 1553 DOI: 10.1039/C1OB06304A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements