Issue 30, 2012

Fine-tuning the balance between crystallization and gelation and enhancement of CO2 uptake on functionalized calcium based MOFs and metallogels

Abstract

The synthesis, structure, gas adsorption and catalytic properties of a new 3D porous, crystalline metal–organic framework (Ca-5TIA-MOF) as well as stable viscoelastic metallogels (Ca-5TIA-Gel) are reported. Remarkably, the preparation of both types of materials can be carried out starting from the same organic ligand (i.e. 5-(1,2,4-triazoleyl)isophthalic acid (5TIA)), divalent metal ion (i.e. Ca(II)) and organic solvent (i.e. DMF). In this particular case, the presence of water in the solvent system favors the formation of a crystalline MOF, whereas a pure organic solvent induces gelation. The characterization of the materials was carried out using a series of techniques including XRD, FT-IR, TGA, TEM, SEM, SAXS and dynamic rheology. Experimental PXRD peaks of both Ca-5TIA-xerogel and Ca-5TIA-MOF matched reasonably well with simulated PXRD, suggesting the presence of, at least, some common structural elements in the 3D networks of both xerogel and crystalline phases. Moreover, the nature of the metal counteranion was found to have a critical influence on the gelation phenomenon. To the best of our knowledge, this report describes unprecedented Ca-based LMW-metallogels, as well as the first porous Ca-based MOF, which shows adsorption capacity for CO2 at 1 atm pressure. Interestingly, Ca-5TIA-xerogel presented 20% higher CO2-uptake than the crystalline Ca-5TIA-MOF at 1 atm and 298 K. Both Ca-5TIA-MOF and Ca-5TIA-Gel also displayed a modest catalytic activity towards the hydrosilylation of benzaldehyde, with slightly better performance for the gel phase material.

Graphical abstract: Fine-tuning the balance between crystallization and gelation and enhancement of CO2 uptake on functionalized calcium based MOFs and metallogels

Supplementary files

Article information

Article type
Paper
Submitted
13 Feb 2012
Accepted
11 May 2012
First published
11 May 2012

J. Mater. Chem., 2012,22, 14951-14963

Fine-tuning the balance between crystallization and gelation and enhancement of CO2 uptake on functionalized calcium based MOFs and metallogels

A. Mallick, E. Schön, T. Panda, K. Sreenivas, D. D. Díaz and R. Banerjee, J. Mater. Chem., 2012, 22, 14951 DOI: 10.1039/C2JM30866E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements