Issue 1, 2013

From “cyborg” lobsters to a pacemaker powered by implantable biofuel cells

Abstract

Enzyme-based biofuel cells implanted into living lobsters or designed as fluidic systems mimicking human blood circulation were used for powering electronic devices. Two lobsters with implanted biofuel cells connected in series were able to generate open circuit voltage (Voc) up to 1.2 V and an electrical watch, selected as a model electronic device, was activated by the power extracted from the “living battery”. The fluidic system composed of five cells filled with human serum solution connected in series generated Voc of ca. 3 V and was able to power a pacemaker. Sustainable operation of the pacemaker was achieved with the system closely mimicking human physiological conditions characteristic of normal and pathophysiological glucose concentrations with the fluidic rate typical for a blood circulation upon resting or performing physical exercises. While the “cyborg” lobsters demonstrate a model system with future possible military, homeland security and environmental monitoring applications, the system activating a pacemaker presents practicality for biomedical applications. The first demonstration of the pacemaker activated by the physiologically produced electrical energy shows promise for future electronic implantable medical devices powered by electricity harvested from the human body.

Graphical abstract: From “cyborg” lobsters to a pacemaker powered by implantable biofuel cells

Supplementary files

Article information

Article type
Communication
Submitted
17 Aug 2012
Accepted
24 Sep 2012
First published
25 Sep 2012

Energy Environ. Sci., 2013,6, 81-86

From “cyborg” lobsters to a pacemaker powered by implantable biofuel cells

K. MacVittie, J. Halámek, L. Halámková, M. Southcott, W. D. Jemison, R. Lobel and E. Katz, Energy Environ. Sci., 2013, 6, 81 DOI: 10.1039/C2EE23209J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements