Issue 7, 2012

Dipolar 3-methoxychromones as bright and highly solvatochromic fluorescent dyes

Abstract

Herein, three environment-sensitive (solvatochromic) fluorescent dyes presenting a strong electron acceptor 3-methoxychromone unit and varied electron donor 2-aryl were developed. All three dyes showed remarkable polarity-dependent shifts of the emission maximum, which increase with extension of the dye conjugation. For the 3-methoxychromone bearing a 7-(diethylamino)-9,9-dimethylfluoren-2-yl donor group the difference between the excited and the ground state dipole moments, estimated from the Lippert–Mataga expression, reached 20 D, which is among the largest reported for neutral dipolar fluorophores. Moreover, the new dyes are characterized by significant two-photon absorption cross-section (up to 450 GM) and large fluorescence quantum yields. The strong decrease in the fluorescence quantum yields of the dyes in polar protic solvents was observed together with the increase in the non-radiative deactivation rates, which can originate from twisted intramolecular charge transfer and intermolecular proton transfer phenomena. In comparison to the parent 3-hydroxychromone derivatives, the new dyes presented significantly improved photostability, which confirms that photodegradation of 3-hydroxychromones occurs from a product of the excited-state intramolecular proton transfer (phototautomer). Finally, an application of the new dyes for probing local binding site polarity of serum albumin was shown. This new class of fluorescent dyes may serve as attractive building blocks for future molecular sensors utilizing environment-sensitive fluorophores.

Graphical abstract: Dipolar 3-methoxychromones as bright and highly solvatochromic fluorescent dyes

Supplementary files

Article information

Article type
Paper
Submitted
25 Sep 2011
Accepted
05 Dec 2011
First published
12 Jan 2012

Phys. Chem. Chem. Phys., 2012,14, 2292-2300

Dipolar 3-methoxychromones as bright and highly solvatochromic fluorescent dyes

O. A. Kucherak, L. Richert, Y. Mély and A. S. Klymchenko, Phys. Chem. Chem. Phys., 2012, 14, 2292 DOI: 10.1039/C2CP23037B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements