Issue 9, 2012

Push-through direct injection NMR: an optimized automation method applied to metabolomics

Abstract

There is a pressing need to increase the throughput of NMR analysis in fields such as metabolomics and drug discovery. Direct injection (DI) NMR automation is recognized to have the potential to meet this need due to its suitability for integration with the 96-well plate format. However, DI NMR has not been widely used as a result of some insurmountable technical problems; namely: carryover contamination, sample diffusion (causing reduction of spectral sensitivity), and line broadening caused by entrapped air bubbles. Several variants of DI NMR, such as flow injection analysis (FIA) and microflow NMR, have been proposed to address one or more of these issues, but not all of them. The push-through direct injection technique reported here overcomes all of these problems. The method recovers samples after NMR analysis, uses a “brush-wash” routine to eliminate carryover, includes a procedure to push wash solvent out of the flow cell via the outlet to prevent sample diffusion, and employs an injection valve to avoid air bubbles. Herein, we demonstrate the robustness, efficiency, and lack of carryover characteristics of this new method, which is ideally suited for relatively high throughput analysis of the complex biological tissue extracts used in metabolomics, as well as many other sample types. While simple in concept and setup, this new method provides a substantial improvement over current approaches.

Graphical abstract: Push-through direct injection NMR: an optimized automation method applied to metabolomics

Supplementary files

Article information

Article type
Paper
Submitted
13 Dec 2011
Accepted
02 Mar 2012
First published
05 Mar 2012

Analyst, 2012,137, 2226-2232

Push-through direct injection NMR: an optimized automation method applied to metabolomics

Q. Teng, D. R. Ekman, W. Huang and T. W. Collette, Analyst, 2012, 137, 2226 DOI: 10.1039/C2AN16251B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements