Issue 7, 2012

Milling induces disorder in crystalline griseofulvin and order in its amorphous counterpart

Abstract

This study investigates two apparently similar thermal signatures, shaped as bimodal exotherms, observed when either the crystalline or the amorphous from of the drug are subjected to milling. Crystalline griseofulvin was cryomilled and the (quenched-melt) amorphous form was subjected to either cryomilling or grinding. The thermal and surface properties of the resulting samples were analyzed using differential scanning calorimetry (DSC) and surface energy analysis. After milling, both the crystalline and the amorphous material revealed visually similar bimodal exothermic events when the heating rate was 20 °C min−1. Under different heating rates, the pair of DSC peaks for the bimodal exotherm of each material behaved entirely different from each other. The two peaks of the bimodal event, as well as the glass transition, can be kinetically resolved for the ground amorphous form using standard mode DSC. In contrast, similar analysis was unable to resolve the bimodal exotherm or a glass transition in the case of the cryomilled crystals. Furthermore, cryomilled crystals do not exhibit a glass transition even when analyzed using modulated DSC. Synchrotron sourced X-ray analysis revealed that grinding the amorphous material results in the nucleation and growth of the crystalline form. Milling thus induces disorder in the crystals of griseofulvin but induces order in the amorphous form of the drug. The surface of the two milled systems consistently exhibited different energetics under a wide range of relative humidity conditions. These findings suggest that cryomilling induces both bulk and surface disorder, specifically, a certain level of dislocations on the crystal. In contrast, grinding the amorphous material lowers the activation energy for crystal formation, inducing nuclei formation and growth throughout the amorphous matrix.

Graphical abstract: Milling induces disorder in crystalline griseofulvin and order in its amorphous counterpart

Article information

Article type
Paper
Submitted
14 Oct 2011
Accepted
06 Feb 2012
First published
24 Feb 2012

CrystEngComm, 2012,14, 2560-2570

Milling induces disorder in crystalline griseofulvin and order in its amorphous counterpart

A. Otte, Y. Zhang, M. T. Carvajal and R. Pinal, CrystEngComm, 2012, 14, 2560 DOI: 10.1039/C2CE06365D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements