Issue 11, 2011

Nanoscale condensation of water on self-assembled monolayers

Abstract

We demonstrate that water is almost universally present on apparently dry self-assembled monolayers, even on those considered almost hydrophobic by conventional methods such as water contact goniometry. The structure and kinetics of nanoscale water adsorption onto these surfaces were investigated using X-ray and neutron reflectometry, as well as atomic force microscopy. Condensation of water on hydrophilic surfaces under ambient conditions formed a dense sub-nanometre surface layer; the thickness of which increased with exponentially limiting kinetics. Tapping mode AFM measurements show the presence of nanosized droplets that covered a small percentage (∼2%) of the total surface area, and which became fewer in number and larger in size with time. While low vacuum pressures (∼10−8 bar) at room temperature did nothing to remove the adsorbed water from these monolayers, heating to temperatures above 65 °C under atmospheric conditions did lead to evaporation from the surface. We demonstrate that water contact angle measurements are not necessarily sensitive to the presence of nanoscale adsorbed water and do not vary with time. For the most part they are a poor indicator of the kinetics and the amount of water condensation onto these surfaces at the molecular level. In summary, this study reveals the need to exclude air containing even trace amounts of water vapor from such surfaces when characterizing using techniques such as X-ray reflectometry.

Graphical abstract: Nanoscale condensation of water on self-assembled monolayers

Supplementary files

Article information

Article type
Paper
Submitted
18 Jan 2011
Accepted
22 Mar 2011
First published
18 Apr 2011

Soft Matter, 2011,7, 5309-5318

Nanoscale condensation of water on self-assembled monolayers

M. James, T. A. Darwish, S. Ciampi, S. O. Sylvester, Z. Zhang, A. Ng, J. J. Gooding and T. L. Hanley, Soft Matter, 2011, 7, 5309 DOI: 10.1039/C1SM05096F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements