Issue 11, 2011

Employing homoenolates generated by NHC catalysis in carbon–carbon bond-forming reactions: state of the art

Abstract

Homoenolate is a reactive intermediate that possesses an anionic or nucleophilic carbon β to a carbonyl group or its synthetic equivalent. The recent discovery that homoenolates can be generated from α,β-unsaturated aldehydesviaN-Heterocyclic Carbene (NHC) catalysis has led to the development of a number of new reactions. A majority of such reactions include the use of carbon-based electrophiles, such as aldehydes, imines, enones, dienones etc. resulting in the formation of a variety of annulated as well as acyclic products. The easy availability of chiral NHCs has allowed the development of very efficient enantioselective variants of these reactions also. The tolerance showed by NHCs towards magnesium and titanium based Lewis acids has been exploited in the invention of cooperative catalytic processes. This tutorial review focuses on these and other types of homoenolate reactions reported recently, and in the process, updates the previous account published in 2008 in this journal.

Graphical abstract: Employing homoenolates generated by NHC catalysis in carbon–carbon bond-forming reactions: state of the art

Article information

Article type
Tutorial Review
Submitted
25 May 2011
First published
20 Jul 2011

Chem. Soc. Rev., 2011,40, 5336-5346

Employing homoenolates generated by NHC catalysis in carbon–carbon bond-forming reactions: state of the art

V. Nair, R. S. Menon, A. T. Biju, C. R. Sinu, R. R. Paul, A. Jose and V. Sreekumar, Chem. Soc. Rev., 2011, 40, 5336 DOI: 10.1039/C1CS15139H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements