Issue 22, 2010

Solvent induced transition from wrinkles to creases in thin film gels with depth-wise crosslinking gradients

Abstract

We investigated solvent induced transition of surface instability from wrinkles to creases in poly(2-hydroxyethyl methacrylate) (PHEMA) gels with depth-wise crosslinking gradients. The mode of surface instability and morphology of surface patterns was found to be dependent on the equilibrium linear expansion, which was a function of crosslinker concentration and the solventpolymer interaction. The maximum linear expansion was obtained when the PHEMA film was swollen in a good solvent, which had the Hildebrand solubility parameter (δs) close to that of PHEMA gels, 26.6 to 29.6 MPa1/2. In a relatively poor solvent (e.g. water), wrinkling patterns were obtained and the morphoplogy was determined by the concentration of the crosslinker, ethylene glycol dimethacrylate (EGDMA). In a good solvent, such as alcohol and alcohol/water mixture, the equilibrium linear expansion ratio increased significantly, leading to the transition from wrinkling to creasing instability. In an ethanol/water mixture, we systematically varied the ratio between ethanol and water and observed the transition from wrinkling to creasing when gradually adding ethanol to water, and the reverse transition when adding water in ethanol. The onset of the linear expansion ratio for creasing (αc,c) was again found dependent on EGDMA concentration: αc,c ≈ 2.00 and 1.3, respectively, for gels with 1 and 3 wt% EGDMA. Finally, we demonstrated confinement of the creases by combining swelling and photopatterning.

Graphical abstract: Solvent induced transition from wrinkles to creases in thin film gels with depth-wise crosslinking gradients

Supplementary files

Article information

Article type
Paper
Submitted
02 May 2010
Accepted
15 Jul 2010
First published
31 Aug 2010

Soft Matter, 2010,6, 5795-5801

Solvent induced transition from wrinkles to creases in thin film gels with depth-wise crosslinking gradients

M. Guvendiren, J. A. Burdick and S. Yang, Soft Matter, 2010, 6, 5795 DOI: 10.1039/C0SM00317D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements