Issue 18, 2010

A low-dimensional model for the red blood cell

Abstract

The red blood cell (RBC) is an important determinant of the rheological properties of blood because of its predominant number density, special mechanical properties and dynamics. Here, we develop a new low-dimensional RBC model based on dissipative particle dynamics (DPD). The model is constructed as a closed-torus-like ring of 10 colloidal particles connected by wormlike chain springs combined with bending resistance. Each colloidal particle is represented by a single DPD particle with a repulsive core. The model is able to capture the essential mechanical properties of RBCs, and allows for economical exploration of the rheology of RBC suspensions. Specifically, we find that the linear and non-linear elastic deformations of healthy and malaria-infected cells match those obtained in optical tweezers experiments. Through simulations of some key features of blood flow in vessels, i.e., the cell-free layer (CFL), the Fahraeus effect and the Fahraeus-Lindqvist effect, we verify that the new model captures the essential shear flow properties of real blood, except for capillaries of sizes comparable to the cell diameter. Finally, we investigate the influence of a geometrical constriction in the flow on the enhancement of the downstream CFL. Our results are in agreement with recent experiments.

Graphical abstract: A low-dimensional model for the red blood cell

Article information

Article type
Paper
Submitted
30 Mar 2010
Accepted
13 May 2010
First published
05 Aug 2010

Soft Matter, 2010,6, 4366-4376

A low-dimensional model for the red blood cell

W. Pan, B. Caswell and G. E. Karniadakis, Soft Matter, 2010, 6, 4366 DOI: 10.1039/C0SM00183J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements