Issue 10, 2010

Singlet oxygen photosensitisation by GFP mutants: oxygen accessibility to the chromophore

Abstract

Aiming at the rational development of genetically-encoded photosensitisers, the production of singlet oxygen has been assessed for a number of class-2 Green Fluorescent Protein (GFP) mutants by means of time-resolved near-infrared luminescence detection. The accessibility of molecular oxygen to the chromophore seems to play a major role in the ability of GFPs to photosensitise singlet oxygen and this can be modulated by introducing specific mutations such as replacement of His148 by a less bulky amino acid. GFPs are also good singlet oxygen quenchers, hence further developments in this area should also seek to eliminate those amino acids with the highest quenching ability, particularly those at the protein surface and in the vicinity of the chromophore.

Graphical abstract: Singlet oxygen photosensitisation by GFP mutants: oxygen accessibility to the chromophore

Article information

Article type
Paper
Submitted
31 May 2010
Accepted
30 Jun 2010
First published
30 Jul 2010

Photochem. Photobiol. Sci., 2010,9, 1336-1341

Singlet oxygen photosensitisation by GFP mutants: oxygen accessibility to the chromophore

A. Jiménez-Banzo, X. Ragàs, S. Abbruzzetti, C. Viappiani, B. Campanini, C. Flors and S. Nonell, Photochem. Photobiol. Sci., 2010, 9, 1336 DOI: 10.1039/C0PP00125B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements