Issue 6, 2010

Inferring large-scale gene regulatory networks using a low-order constraint-based algorithm

Abstract

Recently, simplified graphical modeling approaches based on low-order conditional (in-)dependence calculations have received attention because of their potential to model gene regulatory networks. Such methods are able to reconstruct large-scale gene networks with a small number of experimental measurements, at minimal computational cost. However, unlike Bayesian networks, current low-order graphical models provide no means to distinguish between cause and effect in gene regulatory relationships. To address this problem, we developed a low-order constraint-based algorithm for gene regulatory network inference. The method is capable of inferring causal directions using limited-order conditional independence tests and provides a computationally-feasible way to analyze high-dimensional datasets while maintaining high reliability. To assess the performance of our algorithm, we compared it to several existing graphical models: relevance networks; graphical Gaussian models; ARACNE; Bayesian networks; and the classical constraint-based algorithm, using realistic synthetic datasets. Furthermore, we applied our algorithm to real microarray data from Escherichia coli Affymetrix arrays and validated the results by comparison to known regulatory interactions collected in RegulonDB. The algorithm was found to be both effective and efficient at reconstructing gene regulatory networks from microarray data.

Graphical abstract: Inferring large-scale gene regulatory networks using a low-order constraint-based algorithm

Supplementary files

Article information

Article type
Paper
Submitted
26 Aug 2009
Accepted
07 Jan 2010
First published
19 Feb 2010
This article is Open Access

Mol. BioSyst., 2010,6, 988-998

Inferring large-scale gene regulatory networks using a low-order constraint-based algorithm

M. Wang, V. Augusto Benedito, P. Xuechun Zhao and M. Udvardi, Mol. BioSyst., 2010, 6, 988 DOI: 10.1039/B917571G

This is an Open Access article. The full version of this article can be posted on a website/blog, posted on an intranet, photocopied, emailed, distributed in a course pack or distributed in Continuing Medical Education (CME) materials provided that it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements