Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance upgrade on Thursday 4th of May 2017 from 8.00am to 9.00am (BST).

During this time our websites will be offline temporarily. If you have any questions please use the feedback button on this page. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 41, 2010
Previous Article Next Article

A novel poly(vinylidene fluoride-hexafluoropropylene)/poly(ethylene terephthalate) composite nonwoven separator with phase inversion-controlled microporous structure for a lithium-ion battery

Author affiliations

Abstract

We demonstrate a novel and facile approach to fabrication of a new composite nonwoven separator for a lithium-ion battery, which comprises a phase inversion-controlled, microporous polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP) gel polymer electrolyte and a polyethylene terephthalate (PET) nonwoven support. The thermally stable PET nonwoven is chosen as a mechanical support and contributes to improving the thermal shrinkage of the composite nonwoven separator. The microporous PVdF-HFP gel polymer electrolyte serves as a pore size controller for the composite nonwoven separator. In order to provide a theoretical basis for this approach, an investigation of the phase diagram for coating solutions consisting of PVdF-HFP, solvent (acetone), and nonsolvent (water) is preceded. Based on this understanding of the phase behavior, the effects of phase inversion, more specifically, the water content in the coating solutions, on the morphology evolution of the composite nonwoven separators are identified. The phase inversion-governed microporous structures of the composite nonwoven separators play a crucial role in determining electrochemical performances of cells. The composite nonwoven separator is expected to be a promising alternative to a commercialized polyethylene (PE) separator, particularly in next-generation lithium-ion batteries necessitating superior battery safety and performance.

Graphical abstract: A novel poly(vinylidene fluoride-hexafluoropropylene)/poly(ethylene terephthalate) composite nonwoven separator with phase inversion-controlled microporous structure for a lithium-ion battery

Back to tab navigation
Please wait while Download options loads

Publication details

The article was received on 18 Apr 2010, accepted on 21 Jul 2010 and first published on 10 Sep 2010


Article type: Paper
DOI: 10.1039/C0JM01086C
Citation: J. Mater. Chem., 2010,20, 9180-9186
  •   Request permissions

    A novel poly(vinylidene fluoride-hexafluoropropylene)/poly(ethylene terephthalate) composite nonwoven separator with phase inversion-controlled microporous structure for a lithium-ion battery

    H. Jeong, J. H. Kim and S. Lee, J. Mater. Chem., 2010, 20, 9180
    DOI: 10.1039/C0JM01086C

Search articles by author