Non-contact actuation of triple-shape effect in multiphase polymer network nanocomposites in alternating magnetic field†‡
Abstract
Triple-shape
A series of nanocomposites were synthesized by incorporation of
For quantification of triple-shape properties inductive heating experiments were conducted in an alternating magnetic field at frequency of f = 258 kHz. By increasing the magnetic field strength H the triple-shape effect was triggered, while the maximum achievable temperature Tmax and the shape change was monitored using an infrared video camera.
Excellent triple-shape properties were achieved for nanocomposites containing 40 wt-% of PCL exhibiting a two-step recovery of shapes B and C, when stimulated by step-wise increasing the magnetic field strength. In this way the TSE could be characterized by two distinct switching magnetic strengths Hsw,1(A → B) and Hsw,2(B → C) corresponding to the switching temperatures determined in cyclic, thermomechanical tensile tests for thermally-induced TSP.
- This article is part of the themed collection: Actively Moving Polymers