Abstract
Oscillating electric fields can sustain a macroscopic and steady separation of electrostatic charges. The control over the dynamic charge separation (dyCHASE) is presented for the example of circular menisci of thin, free standing smectic films. These films are subject to an in-plane, alternating radial electric field. The boundaries of the menisci become charged and unstable in the electric field and deform into pulsating, flower-like shapes. This instability ensues only at frequencies of the electric field that are lower than a critical one. The critical frequency is a linear function of the strength of the electric field. Since the speed of electrophoretic drift of ions is also linearly related to the strength of the field, the linear relation between critical frequency and the amplitude of the field sets a characteristic length scale in the system. We postulate that dyCHASE is due to (i) electrophoretic motion of ions in the liquid crystalline (
- This article is part of the themed collection: Emerging investigators