Issue 6, 2009

Tensegrity-guided self assembly: from molecules to living cells

Abstract

One of the wonders of life is that all cells undergo continual turnover, and sustain their structure and function through continuous molecular self assembly. However, this dynamic renewal process is commonly viewed from the ‘bottom-up’, by focusing on the properties and interaction functions of individual molecular components. In reality, all cells form from other cells using preexisting structures, such as the cytoskeleton, as orienting scaffolds that guide replication and formation of new cellular components. In this article, we take a ‘top-down’ approach and describe how living cells may use hierarchical tensegrity principles to stabilize the shape and structure of their internal subcomponents at multiple size scales. We also explain how use of this form of architecture that depends on tensional prestress for shape stability could provide a mechanism to focus mechanical forces on the molecular components that comprise these structures, and thereby control their biochemical activities and self assembly behavior in living cells. In this manner, self assembly of load-bearing structures in cells proceeds in particular patterns that precisely match the forces they need to bear. This also explains how cells seamlessly integrate structure and function at all size scales, a process that is fundamental to all living materials.

Graphical abstract: Tensegrity-guided self assembly: from molecules to living cells

Article information

Article type
Review Article
Submitted
18 Apr 2008
Accepted
12 Jun 2008
First published
29 Aug 2008

Soft Matter, 2009,5, 1137-1145

Tensegrity-guided self assembly: from molecules to living cells

D. Stamenović and D. E. Ingber, Soft Matter, 2009, 5, 1137 DOI: 10.1039/B806442C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements