Issue 9, 2009

A novel approach to raspberry-like particles for superhydrophobic materials

Abstract

A new strategy was developed to prepare raspberry-like particles by introducing poly(acrylic acid) (PAA)-functionalized polystyrene (PS) particles into hydrolysis reaction of tetraethoxysilane (TEOS). The monodisperse PAA-functionalized PS particles were used as cores and nanosized silica particles were then assembled on the surface of PS particles to construct raspberry-like particles during the hydrolysis process. With the increase of PAA content from 11% to 20% (wt) at the surface of latexes, the diameter of the silica particles assembled at the surface of cores decreased from 124 nm to 36 nm. The structure, morphology and constitution of the PAA-functionalized PS particles and the raspberry-like particles were characterized by Fourier transform infrared spectroscopy (FT-IR), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). In addition, the particulate films were constructed by assembling these raspberry-like particles on glass substrates. After surface modification with dodecyltrichlorosilane, superhydrophobic surfaces can be obtained and the contact angle of water on the dual-sized structured surface can be adjusted by the scale ratio of the micro/nano surface structure of raspberry-like particles.

Graphical abstract: A novel approach to raspberry-like particles for superhydrophobic materials

Supplementary files

Article information

Article type
Paper
Submitted
25 Jun 2008
Accepted
24 Nov 2008
First published
22 Jan 2009

J. Mater. Chem., 2009,19, 1297-1304

A novel approach to raspberry-like particles for superhydrophobic materials

Z. Qian, Z. Zhang, L. Song and H. Liu, J. Mater. Chem., 2009, 19, 1297 DOI: 10.1039/B810808K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements