Issue 19, 2009

Synthesis, structural characterisation and solution chemistry of ruthenium(III) triazole-thiadiazine complexes

Abstract

Two ruthenium(III) complexes structurally similar to the anticancer compound NAMI were prepared: Na[RuCl4(DMSO)(L1)] (1) and Na[RuCl4(DMSO)(L2)] (2), where L1 and L2 are differently functionalised triazole-thiadiazine ligands. To facilitate the crystallisation of the complex anions, Na+ was substituted with the [bis(triphenylphosphoranylidene)ammonium] cation (PPN+), allowing the X-ray characterisation of PPN[RuCl4(DMSO)(L1)]·2H2O (1a·2H2O) and PPN[RuCl4(DMSO)(L2)]·3H2O (2a·3H2O), respectively. The two compounds undergo stepwise hydrolytic processes, as assessed by means of UV-vis and 1H NMR spectroscopy. The first hydrolytic step consists of the replacement of a chloride anion with a water molecule, with a half-life of 50 min (1) and 110 min (2), while the subsequent hydrolytic steps are more complicated to describe since more than one product is generated at the same time. The redox potential of the Ru(III)/Ru(II) couple (0.31 V for 1 and 0.28 V for 2) suggests that these complexes can be reduced in the intracellular environment, in agreement with the “activation by reduction” mechanism proposed for NAMI and NAMI-A. 1 and 2 were tested on a human cancer cell line derived from a fibrosarcoma (HT1080), and on non-cancerous primary human fibroblasts (HF), where they showed a modest inhibitory effect.

Graphical abstract: Synthesis, structural characterisation and solution chemistry of ruthenium(III) triazole-thiadiazine complexes

Supplementary files

Article information

Article type
Paper
Submitted
24 Dec 2008
Accepted
25 Feb 2009
First published
20 Mar 2009

Dalton Trans., 2009, 3766-3773

Synthesis, structural characterisation and solution chemistry of ruthenium(III) triazole-thiadiazine complexes

M. Delferro, L. Marchiò, M. Tegoni, S. Tardito, R. Franchi-Gazzola and M. Lanfranchi, Dalton Trans., 2009, 3766 DOI: 10.1039/B823271G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements