Jump to main content
Jump to site search

Issue 12, 2008
Previous Article Next Article

Parallel kinetic resolution of tert-butyl (RS)-3-oxy-substituted cyclopent-1-ene-carboxylates for the asymmetric synthesis of 3-oxy-substituted cispentacin and transpentacin derivatives

Author affiliations

Abstract

tert-Butyl (RS)-3-methoxy- and (RS)-3-tert-butyldiphenylsilyloxy-cyclopent-1-ene-carboxylates display excellent levels of enantiorecognition in mutual kinetic resolutions with both lithium (RS)-N-benzyl-N-(α-methylbenzyl)amide and lithium (RS)-N-3,4-dimethoxybenzyl-N-(α-methylbenzyl)amide. A 50 : 50 pseudoenantiomeric mixture of lithium (S)-N-benzyl-N-(α-methylbenzyl)amide and lithium (R)-N-3,4-dimethoxybenzyl-N-(α-methylbenzyl)amide allows for the efficient parallel kinetic resolution of the tert-butyl (RS)-3-oxy-substituted cyclopent-1-ene-carboxylates, affording differentially protected 3-oxy-substituted cispentacin derivatives in high yield and >98% de. Subsequent N-deprotection and hydrolysis provides access to 3-oxy-substituted cispentacin derivatives in good yield, and in >98% de and >98% ee, while stereoselective epimerisation and subsequent deprotection affords the corresponding transpentacin analogues in good yield, and in >98% de and >98% ee.

Graphical abstract: Parallel kinetic resolution of tert-butyl (RS)-3-oxy-substituted cyclopent-1-ene-carboxylates for the asymmetric synthesis of 3-oxy-substituted cispentacin and transpentacin derivatives

Back to tab navigation

Supplementary files

Publication details

The article was received on 12 Feb 2008, accepted on 12 Mar 2008 and first published on 21 Apr 2008


Article type: Paper
DOI: 10.1039/B802428F
Citation: Org. Biomol. Chem., 2008,6, 2195-2203
  •   Request permissions

    Parallel kinetic resolution of tert-butyl (RS)-3-oxy-substituted cyclopent-1-ene-carboxylates for the asymmetric synthesis of 3-oxy-substituted cispentacin and transpentacin derivatives

    Y. Aye, S. G. Davies, A. C. Garner, P. M. Roberts, A. D. Smith and J. E. Thomson, Org. Biomol. Chem., 2008, 6, 2195
    DOI: 10.1039/B802428F

Search articles by author

Spotlight

Advertisements