Functionalized anthradithiophenes for organic field-effect transistors†
Abstract
Two new semiconductors for organic thin-film transistors (OTFTs), diperfluorophenyl anthradithiophene (DFPADT) and dimethyl anthradithiophene (DMADT), have been synthesized and characterized. The first material exhibits ambipolar transport in OTFT devices with field-effect mobilities (μ) of 6 × 10−4 cm2 V−1 s−1 and 0.05 cm2 V−1 s−1 for electrons and holes, respectively. Therefore, diperfluorophenyl substitution was found to be effective to induce n-type transport. Dimethyl-substituted anthradithiophene (DMADT) was also synthesized for comparison and exhibited exclusively hole transport with carrier mobility of ∼0.1 cm2 V−1 s−1. Within this semiconductor family, OTFT carrier mobility values are strongly dependent on the semiconductor film growth conditions, substrate deposition temperatures, and gate dielectric surface treatment.
Please wait while we load your content...