Issue 26, 2005

Fungus-mediated biosynthesis of silica and titania particles

Abstract

The synthesis of inorganic materials by biological systems is characterized by processes that occur at close to ambient temperatures, pressures and neutral pH. This is exemplified by biosilicification in marine organisms such as diatoms while laboratory-based synthesis of silica involves extreme temperature and pH conditions. We show here that silica and titania particles may be produced by challenging the fungus Fusarium oxysporum with aqueous anionic complexes SiF62− and TiF62− respectively. Extra-cellular protein-mediated hydrolysis of the anionic complexes results in the facile room temperature synthesis of crystalline titania particles while calcination at 300 °C is required for crystallization of silica.

Graphical abstract: Fungus-mediated biosynthesis of silica and titania particles

Supplementary files

Article information

Article type
Paper
Submitted
28 Feb 2005
Accepted
12 May 2005
First published
25 May 2005

J. Mater. Chem., 2005,15, 2583-2589

Fungus-mediated biosynthesis of silica and titania particles

V. Bansal, D. Rautaray, A. Bharde, K. Ahire, A. Sanyal, A. Ahmad and M. Sastry, J. Mater. Chem., 2005, 15, 2583 DOI: 10.1039/B503008K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements