Issue 16, 2003

The Hendrickson reagent and the Mitsunobu reaction: a mechanistic study

Abstract

The alkoxytriphenylphosphonium ion intermediate of the Mitsunobu reaction can be generated using the Hendrickson reagent, triphenylphosphonium anhydride trifluoromethanesulfonate, 1. Strangely, while the reagent 1 can be used in place of the Mitsunobu reagents (triphenylphosphine and a dialkylazodicarboxylate) for the esterification of primary alcohols, secondary alcohols such as menthol undergo elimination. Evidence is presented to show that this unexpected result is due to the presence of trialkylammonium triflate salts. Such salts lead to a dramatic decrease in the rate of esterification relative to competing elimination. The Mitsunobu esterification of menthol with p-nitrobenzoic acid was re-examined and the occurrence of elimination reported for the first time. The presence of traces of tetrabutylammonium triflate led to a dramatic reduction in the yield of inverted ester and a corresponding increase in the yield of anti elimination product 2-menthene. The mechanism of the Mitsunobu reaction is discussed in the light of the dramatic salt effect on both the rate and outcome of the reaction and the possible involvement of ion pair clustering. In contrast, use of the reagent 1 resulted in syn elimination to give a 1 ∶ 2 mixture of 2- and 3-menthenes. Finally, 1 and sodium azide can be used to convert a primary alcohol into an azide in high yield. There was no reaction under Mitsunobu conditions.

Graphical abstract: The Hendrickson reagent and the Mitsunobu reaction: a mechanistic study

Supplementary files

Article information

Article type
Paper
Submitted
14 May 2003
Accepted
25 Jun 2003
First published
15 Jul 2003

Org. Biomol. Chem., 2003,1, 2958-2965

The Hendrickson reagent and the Mitsunobu reaction: a mechanistic study

K. E. Elson, I. D. Jenkins and W. A. Loughlin, Org. Biomol. Chem., 2003, 1, 2958 DOI: 10.1039/B305375J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements